

brief CV to 1984 studied chemical engineering at RWTH Aachen 1984 - 1985 studied with J.M. Prausnitz, UC Berkeley, California 1987 Ph.D. in Chemical Engineering at RWTH Aachen 1995 habilitation at TU Darmstadt 1995 - 2011 full professor, RWTH Aachen 2011 - 2014 full professor, Graz University of Technology since 2014 full professor, University of Liège

economic lifetimes and life spans							
	lifetime	annual substitution rate					
	а	% / a					
electrical power plants	25 to 40	4 to 2.5					
bassenger car	10	10					
truck	10	10					
oven, heating	15 to 25	4 to 7					
house insulation	50 to 100	1 to 2					
PEPs CHENICAL ENGINEERING		58 🚺					

	comparis	son of en	ergy-transition scenarios					
	000700/		medium		high			
	transition	rates	temp.	end	temp.	end		
	scenario:	% / a	°C		°C			
	easiest	20 - 2.0	+1.76	2068	+1.93	2077		
	medium	25 - 2.5	+1.58	2057	+1.66	2062		
	challenging	30 - 3.0	+1.47	2051	+1.51	2053		
	PEPs					¢ L IÈGE		
CHENICAL 70 universi								

IPCC SR15 of October 6, 2018
 consequences for climate and wellbeing: much larger at 1.5°C than today at around 1.0°C much larger at 2.0°C than at 1.5°C
 net-decarbonization required by 2050 for reaching 1.5°C: rapid and far-reaching transition 2075 for reaching 2.0°C
 1.5°C with no or at most limited overshoot only possible with CDR (carbon dioxide removal) of 100-1000 Gt CO₂ until 2100
 current ambitions stated by countries acording to COP21 Paris agreement will not allow to limit to 1.5°C, instead 3°C in 2100 further increasing afterwards
 adverse consequences will be hitting especially disadvantaged and vulnerable populations
PEPs CHENICAL EDGINEERING 114 LIÈGE Université

gen	feedstock	products	radius km	4 D 5	area in m 00 100	n²/cap 10 1500			
	sugar beet	sugar or ethanol + CO ₂	10.4				ranges:		
ration		ethanol	14.6				maximum national and		
		ethylene	18.7		goai		world average productivit		
	sugar cane	sugar or ethanol + CO ₂	7.5				projected for 2050		
		ethanol	10.5						
ene	corn	sugar or ethanol + CO ₂	13.4				color:		
t ge		ethanol	18.7				technically realized		
lirst	wheat	sugar or ethanol + CO ₂	17.5				partly pilot-plant		
-		ethanol	24.5						
	oil palm	plant oil	11.4				radius for capacity of		
	rape seed	plant oil	30.1				250 000 t/a		
ond	miscanthus/reeds	sugar or ethanol + CO ₂	5.7				200 000 44		
		ethanol	7.9						
l Sec	wood	sugar or ethanol + CO ₂	14.8						
0,		ethanol	20.7						
third	corn straw	sugar or ethanol + CO ₂	20.1						
		ethanol	28.2						
	wheat straw	sugar or ethanol + CO ₂	23.2						
	Wilcat Stiaw	ethanol	32.5						
	PEPs CHENICAL			ar	able la	and	182 LIÈGE université		

m² / (t/a)	
1 to 2	
1 to 5	bio-technological processes (alcohol from sugar)
0.2 to 0.5	direct biomass conversion (sugar from starch)
0.03 to 0.1	chemical process (e.g. steam cracker)

main results	
two challenges:	climate ↔ energy
Ū	land area \leftrightarrow food, bio-energy, bio-materials
	technology ↔ behavior
significant drivers:	population growth
0	vegetal ↔ animal-based food
complete shift requ	uired in:
	- energy industry
	- agriculture
	- chemical industry
	- etc.
replace fossil reso	urces annually by up to
	- for +1.5°C goal: 3%/a until 2050
	- for +2.0°C goal: 2%/a until 2075
	(solar & wind today: ≈ 0.5%)
PEPs	🔈 🖌 LIÈGE
CHENICAL CHENICAL ENGINEERING	201 4 université

evels	relations between different entities of same level
structure with memory	
structure	
macroscopic	
systems	
molecules	deterministic chaos, continually passing through bifurcations, divergent, universal network of randomizing interactions
quantum	
objects	

causality	
levels	relations between different entities of same level
structure with memory	
structure	
macroscopic systems	
molecules	deterministic chaos, continually passing through bifurcations, divergent, universal network of randomizing interactions
quantum objects	either random or deterministic chaos as for molecules
CHEMICAL CHEMICAL	243 243 243

levels	relations between different entities of same level	
structure with memory		
structure		
macroscopic systems	defined properties, physical laws, averaged over many molecules, not causal	
molecules	deterministic chaos, continually passing through bifurcations, divergent, universal network of randomizing interactions	
quantum objects	either random or deterministic chaos as for molecules	

causality		
levels	relations between different entities of same level	
structure with memory	causal, convergent, intentional	
structure	causal	
macroscopic systems	defined properties, physical laws, averaged over many molecules, not causal	
molecules	deterministic chaos, continually passing through bifurcations, divergent, universal network of randomizing interactions	
quantum objects	either random or deterministic chaos as for molecules	
•••• PEPs •••• CREMICAL •••• ENGINEERING	249 249	

causality		
levels	relations between different entities of same level	
structure with memory	causal, convergent, intentional	
structure	causal	
macroscopic systems	defined properties, physical laws, averaged over many molecules, not causal deterministic chaos, continually passing through bifurcations, divergent, universal network of randomizing interactions	
molecules		
quantum objects	either random or deterministic chaos as for molecules	
CHEMICAL ENGINEERING	252 LIÈGE université	

levels	relations between different entities of same level	
structure with memory	causal, convergent, intentional	
structure	causal	
macroscopic systems	defined properties, physical laws, averaged over many molecules, not causal	
molecules	deterministic chaos, continually passing through bifurcations, divergent, universal network of randomizing interactions	
quantum objects	either random or deterministic chaos as for molecules	

picture				
 now: - 2 to 3 seconds 				
 consciousness: accessing the filing system accessible after 'now' 				
 unconscious: very active system constantly accessing the pRAM filing system e.g. brain processes not accessible after 'now' determines what is sent to pRAM 				
•••• PEPs ••• CREMICAL ••• EINGINEERING	268 LIÈGE université			

