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brief CV
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to 1984 studied chemical engineering at RWTH Aachen

1984 - 1985 studied with J.M. Prausnitz, UC Berkeley, California 

1987 Ph.D. in Chemical Engineering at RWTH Aachen

1995 habilitation at TU Darmstadt

1995 - 2011 full professor, RWTH Aachen

2011 - 2014 full professor, Graz University of Technology

since 2014 full professor, University of Liège
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agenda
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 introduction, summary

 world population  driving force

 sustainable energy transition  time scale

 food vs. bioeconomy, hunger  limiting criteria

 a word on IPCC scenarios

 exergy to quantify energy

 bio- or CO2-economy fuel & material  options

bio-economy  chances & challenges

 individual and political consequences

philosophy:

 physical basis

 causality

 conscioness

 free will and responsibility

the playlist on YouTube
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https://www.youtube.com/
search on YouTube:
andreas pfennig sustainability

www.chemeng.uliege.be/successfulfuture
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GISTEMP Team, 2018: GISS Surface Temperature Analysis (GISTEMP). 
NASA Goddard Institute for Space Studies. Dataset accessed 2018-11-14 at 
https://data.giss.nasa.gov/gistemp/
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COP 21 Paris agreement

UN, Kyoto protocol

G. H. Brundtland, Our Common Future

G. O. Barney, The Global 2000 Report

D. L. Meadows, Club of Rome, The Limits to Growth
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UN Climate Conference 21, 2015, Paris

Article 2.1:

This Agreement ... aims to strengthen the global 
response to the threat of climate change ... by:

Holding the increase in the global average 
temperature to well below 2 °C above pre-
industrial levels and to pursue efforts to limit 
the temperature increase to 1.5 °C above pre-
industrial levels, recognizing that this would 
significantly reduce the risks and impacts of 
climate change... 

10

telling the future
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modelling approach

 not an IAM (integrated assessment model)

 based on simple balances:

 influence of individual parameters directly visible

 main drivers easy to realize

negative influence of too detailed models:

K. Sundmacher, A. Kienle: Reactive Distillation Status and 
Future Directions. Wiley-VCH, Weinheim, 2003
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the system, scale-down factor 10 000 000
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world population scenarios
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population growth eating up progress

since 1990:

 additional people fed: 2.5 bn

 population increased by: -2.3 bn

 undernourishment decreased by 0.2 bn

14
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individual actors

15

stable
sustainable

development

individual citizen

company manager politician

media, NGOs, 

religion, ...

- legitimation?
- representing whom?
- legitimate goals?
- controlled how?
- transparency!

control

negotiate
 systems view

 essential

in conclusion
• reaching climate goals is possible with available technology, but

systematically applied on larger scale
• significant increased global effort is required, growth 20 - 30%/a

• replace fossil resources annually by up to
- for +1.5°C goal: 3%/a until 2050

- for +2.0°C goal: 2%/a until 2075

• food supply is critical, but change of individual choices essential:

- number of children
- plant-based vs. animal-based food

• bio-based or CO2-based materials production is feasible, but not solely 
from third-generation biomass

• minimize bio-energy: fuel vs. food
• systems view instead of focus on own interests
• developmental tipping point is possible
• individually responsible, not just question of politics & technology
• it has to happen now, otherwise situation will get bad during our lifetime 

and that of our children

16
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all in one book
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Andreas Pfennig, 2018
So Gelingt unsere Zukunft
Books on Demand, Norderstedt
www.bod.de/buchshop/
so-gelingt-unsere-zukunft-
andreas-pfennig-9783752831870

chapter titles:
1 Leben, Tod und Sterben
2 Evolution
3 Realität, Wissen und Wahrnehmung
4 Lernen und wissenschaftliche Erkenntnis 
5 Wissenschaftliche Weltsicht 
6 Gehirn, Bewusstsein, Selbst, Kausalität und

freier Wille
7 Weltanschauung, Sinn und Ethik
8 Globale Ethik, individuelles Handeln
9 Gelungenes Leben, Menschsein

18This is all we got!
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questions to be answered

 Why is world population so important?

 What is known about development of 
world population?

22

some major drivers

world population
7.600.000.000

food
2.8 kg/(cap d)

energy
21.000 kWh/(cap a)

materials
ca. 0.9 kg/(cap d)

fossil resources
5.6 kg/(cap d)

land area
agricultural: 7.000 m2/cap

23
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some major drivers
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THE major driver

world population

7.600.000.000

food
2.8 kg/(cap d)

energy
21.000 kWh/(cap a)

materials
ca. 0.9 kg/(cap d)

fossil resources
5.6 kg/(cap d)

land area
agricultural: 7.000 m2/cap
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data sources
 United Nations, DESA/Population Division, 2017 Revision of World 

Population Prospects, population.un.org/wpp/, accessed 20.09.2018.
 UN Department of Economic and Social Affairs, Population Division, Long-range World Population Projections: Based 

on the 1998 Revision, 1998, www.un.org/esa/population/publications/longrange/longrange.htm (accessed 31.07.2018).

 UN Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2000 Revision. 
Volume III. Analytical Report. United Nations, New York 2002.

 UN Department of Economic and Social Affairs, Population Division. World Population Prospects. The 2002 Revision. 
Volume III: Analytical Report. United Nations, New York 2004.

 UN Department of Economic and Social Affairs, Population Division. World Population Prospects. The 2004 Revision. 
Highlights, United Nations, New York 2005

 UN Department of Economic and Social Affairs, Population Division. World Population Prospects. The 2006 Revision. 
Highlights. United Nations, New York 2007.

 UN Department of Economic and Social Affairs, Population Division. World Population Prospects. The 2008 Revision. 
Highlights. United Nations, New York 2009.

 UN Department of Economic and Social Affairs, Population Division. World Population Prospects. The 2010 Revision. 
Volume I: Comprehensive Tables. United Nations, New York 2011.

 UN Department of Economic and Social Affairs, Population Division. World Population Prospects. The 2012 Revision. 
Volume I: Comprehensive Tables. United Nations, New York 2013, population.un.org/wpp/Publications/ (accessed 
20.09.2018).

 UN Department of Economic and Social Affairs, Population Division. World Population Prospects. The 2015 Revision. 
Volume I: Comprehensive Tables. United Nations, New York 2015, population.un.org/wpp/Publications/ (accessed 
20.09.2018).

 UN Department of Economic and Social Affairs, Population Division. World Population Prospects. The 2017 Revision. 
Volume I: Comprehensive Tables. United Nations, New York 2017, population.un.org/wpp/Publications/ (accessed 
20.09.2018).
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development of UN-WPP predicting for 2050
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development of UN-WPP predicting for 2050
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probabilistic evaluation by UN-PD-DESA
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33

uncertainty:

• known possible errors
• can be quantified

ignorance:

• lack of knowledge
• decreases over time
• cannot be quantified
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reasons for ignorance (e-mail UN-DESA)

 slower than expected fertility decline in many 
sub-Saharan African countries

 improved child survival

 slowdown/reversal of the HIV epidemic.  

 our knowledge increases continually

34

fertility: history and scenarios
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world population scenarios
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population growth eating up progress

since 1990:

 additional people fed: 2.5 bn

 population increased by: -2.3 bn

 undernourishment decreased by 0.2 bn
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strong influence of GDP on fertility
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conclusion

40

UN high-population variant equally

realistic as medium variant

in 2050 between 9.7 and 11 billion people

in 2100 between 11.2 and 16.5 billion people

strong effect on resource consumption &

waste production

strong effect on world hunger
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questions to be answered

 What is the current status of the
sustainable energy transition?

 How fast do we need to change to reach
climate goals?

 What happens, if we wait before fostering
sustainable energy transition?

 Can we realistically reach the 1.5°C 
climate goal?

43
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databases used and copyrights
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copyrights:

 IPCC illustrative model pathways:
Daniel Huppmann, Elmar Kriegler, Volker Krey, Keywan Riahi, Joeri Rogelj, 
Steven K. Rose, John Weyant, et al.,
IAMC 1.5°C Scenario Explorer and Data hosted by IIASA.
Integrated Assessment Modeling Consortium & International Institute for Applied Systems 
Analysis, 2018.  
doi: https://doi.org/10.22022/SR15/08-2018.15429
url: https://data.ene.iiasa.ac.at/iamc-1.5c-explorer, release 1.0

 UN WPP population prospects:
United Nations, Department of Economic and Social Affairs, Population Division (2017). 
World Population Prospects: The 2017 Revision, DVD Edition.
https://population.un.org/wpp/

 BP Statistical Review of World Energy 2018
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-
energy/downloads.html

 FAOSTAT: FAO, 2018, data on food production and land-area use, 
http://www.fao.org/faostat/en/#data, accessed on various dates 2018

 CDIAC: CO2 historical data obtained from
http://cdiac.ess-dive.lbl.gov/trends/emis/meth_reg.html

modelling approach

 not an IAM (integrated assessment model)

 based on simple balances:

 influence of individual parameters directly visible

 main drivers easy to realize

negative influence of too detailed models:

K. Sundmacher, A. Kienle: Reactive Distillation Status and 
Future Directions. Wiley-VCH, Weinheim, 2003

45
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CO2 content of the atmosphere
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response to 100GtC pulse emission

48

source: Joos, F., et al.: Carbon dioxide and climate impulse response functions for the computation 
of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys., 13 (2013) 2793-2825. 
© Author(s) 2013. CC Attribution 3.0 License
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the system, scale-down factor 10 000 000
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annual primary-energy consumption
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development of per-capita demand
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future growth scenarios of wind & solar
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economic lifetimes and life spans
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change in energy system
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three energy scenarios
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influence of population variant
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comparison of energy-transition scenarios

70

energy

transition

scenario:

UN WPP population variant

medium high

rates temp. end temp. end

% / a °C °C

easiest 20 - 2.0 +1.76 2068 +1.93 2077

medium 25 - 2.5 +1.58 2057 +1.66 2062

challenging 30 - 3.0 +1.47 2051 +1.51 2053

negative-emission technologies
 CDR: carbon-dioxide removal

 CCS: carbon capture and sequestration/storage

 BECCS: bio-energy with CCS

 DACCS: direct air carbon capture with storage

 AR: afforestation and reforestation

 AFOLU: agriculture, forestry and other land use

not included because:

 business case only, if trading of CO2 emission rights

 debt for the future

 bet on future political and technological development

 IPCC SR15: 
...is subject to multiple feasibility and sustainability constraints.
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consequences of a delay
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conclusion

 time-scale: turning point in 2 to 10 years

strong effect in 5 to 20 years

 volatile prices of fossil feedstock foreseeable

 we overslept the 1.5°C climate goal!

 urgent concerted action required to reach 2.0°C goal

 not only more solar and wind, 

but also change of end-use technologies

 complete and quick restructuring of major

industries required

 reducing population growth simplifies transition

 bio-energy, bio-materials could help
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questions to be answered

 food or fuel: How will the competition
between food production and feedstock
generation for bio-energy and bio-
materials work out?

 What are consequences for our wellbeing?
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databases used and copyrights
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copyrights:

 IPCC illustrative model pathways:
Daniel Huppmann, Elmar Kriegler, Volker Krey, Keywan Riahi, Joeri Rogelj, 
Steven K. Rose, John Weyant, et al.,
IAMC 1.5°C Scenario Explorer and Data hosted by IIASA.
Integrated Assessment Modeling Consortium & International Institute for Applied Systems 
Analysis, 2018.  
doi: https://doi.org/10.22022/SR15/08-2018.15429
url: https://data.ene.iiasa.ac.at/iamc-1.5c-explorer, release 1.0

 UN WPP population prospects:
United Nations, Department of Economic and Social Affairs, Population Division (2017). 
World Population Prospects: The 2017 Revision, DVD Edition.
https://population.un.org/wpp/

 BP Statistical Review of World Energy 2018
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-
energy/downloads.html

 FAOSTAT: FAO, 2018, data on food production and land-area use, 
http://www.fao.org/faostat/en/#data, accessed on various dates 2018

 CDIAC: CO2 historical data obtained from
http://cdiac.ess-dive.lbl.gov/trends/emis/meth_reg.html
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food supply by country
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the system, scale-down factor 10 000 000

84

assumptions for scenario analysis

 continue trends

 slow increase of per capita kcal-supply

 increase agricultural productivity

 intensify animal production

 10% primary energy bio-based
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world population scenarios
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intensity of animal-based food production
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land-area: challenging, high pop. variant
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land-area: challeng., medium pop., vegetal
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global protein supply
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workarounds?
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CO2 content of the atmosphere
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is higher CO2 concentration beneficial?
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is higher CO2 concentration beneficial?
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conclusion

107

no workarounds!

with behaviour change: 

available technology allows sustainable wellbeing

without behaviour change: 

technologies continually pushed to limits or

more people undernourished

 change of behaviour essential

conclusion

108

to feed the world, change in behavior essential:

 maximum 2 children per family

 exclusively plant-based food

 support for less developed countries

nevertheless: competiton for land area between

 feedstock for bio-fuels and bio-materials 

 food production.

 land-area demand for feedstock to produce

bio-energy and bio-materials is essential criterion

for selection of process routes!
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questions to be answered

 How realistic are the 
IPCC illustrative model pathways?

 Which goals can actually be reached?

111

reference to IPCC reports used

112

 IPCC - Intergovernmental Panel on Climate Change

established by the United Nations Environment Programme (UNEP) and 
the World Meteorological Organization (WMO) in 1988

 AR5: IPCC, 2014: Climate Change 2014: Mitigation of Climate Change. 
Contribution of Working Group III to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-
Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, 
S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von 
Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA.

 SR15: GLOBAL WARMING OF 1.5 °C
an IPCC special report on the impacts of global warming of 1.5 °C above 
pre-industrial levels and related global greenhouse gas emission pathways, 
in the context of strengthening the global response to the threat of climate 
change, sustainable development, and efforts to eradicate poverty
http://www.ipcc.ch/report/sr15/ (accessed 08.10.2018)
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databases used and copyrights

113

copyrights:

 IPCC illustrative model pathways:
Daniel Huppmann, Elmar Kriegler, Volker Krey, Keywan Riahi, Joeri Rogelj, 
Steven K. Rose, John Weyant, et al.,
IAMC 1.5°C Scenario Explorer and Data hosted by IIASA.
Integrated Assessment Modeling Consortium & International Institute for Applied Systems 
Analysis, 2018.  
doi: https://doi.org/10.22022/SR15/08-2018.15429
url: https://data.ene.iiasa.ac.at/iamc-1.5c-explorer, release 1.0

 UN WPP population prospects:
United Nations, Department of Economic and Social Affairs, Population Division (2017). 
World Population Prospects: The 2017 Revision, DVD Edition.
https://population.un.org/wpp/

 BP Statistical Review of World Energy 2018
https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-
energy/downloads.html

 FAOSTAT: FAO, 2018, data on food production and land-area use, 
http://www.fao.org/faostat/en/#data, accessed on various dates 2018

 CDIAC: CO2 historical data obtained from
http://cdiac.ess-dive.lbl.gov/trends/emis/meth_reg.html

IPCC SR15 of October 6, 2018

 consequences for climate and wellbeing: 
much larger at 1.5°C than today at around 1.0°C
much larger at 2.0°C than at 1.5°C

 net-decarbonization required by
2050 for reaching 1.5°C: rapid and far-reaching transition
2075 for reaching 2.0°C 

 1.5°C with no or at most limited overshoot only possible with
CDR (carbon dioxide removal) of 100-1000 Gt CO2 until 2100

 current ambitions stated by countries acording to COP21 
Paris agreement will not allow to limit to 1.5°C, 
instead 3°C in 2100 further increasing afterwards

 adverse consequences will be hitting especially
disadvantaged and vulnerable populations

114
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population projections IPCC AR5

115
Figure 6.1, p. 425 from: IPCC, 2014: 
Climate Change 2014: Mitigation of Climate Change

 90% of scenarios
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IPCC AR5, Climate Change 2014, Mitigation

117

On the one hand, the scenarios assessed in this chapter 
do not represent a random sample that can be used 

for formal uncertainty analysis. ...

At the same time, however, ... the scenarios were 
generated by experts making informed judgements 

about how key forces might evolve in the future and how 
important systems interact. Hence, although they are not 
explicitly representative of uncertainty, they do provide 
real and often clear insights about our lack of 
knowledge about key forces that might shape the future.

population projections IPCC AR5

118
Figure 6.1, p. 425 from: IPCC, 2014: 
Climate Change 2014: Mitigation of Climate Change

 90% of scenarios

UN WPP
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population projections IPCC AR5

119
Figure 6.1, p. 425 from: IPCC, 2014: 
Climate Change 2014: Mitigation of Climate Change

based on 
UN WPP 2012
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population projections IPCC AR5

123
Figure 6.1, p. 425 from: IPCC, 2014: 
Climate Change 2014: Mitigation of Climate Change

based on 
UN WPP 2012
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development of UN-WPP predicting for 2050

124

2000 2010 2020 2030 2040 2050
7

8

9

10

11

 

 

w
o

rl
d

 p
o

p
u

la
ti
o

n
 2

0
5

0
 i
n

 b
ill

io
n

year of publication

high variant

medium variant

low va
ria

nt

11.03 billion in 2050



57

world population scenarios

125
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conclusions

 population may not develop below WPP 
medium variant as shown in IPCC AR5 
diagram

 instead development according to WPP 
high variant may be at least as likely as
according to WPP medium variant
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IPCC SR15: illustrative model pathways

131
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copyrights data see:
IMP P1 to P4: https://data.ene.iiasa.ac.at/iamc-1.5c-explorer
WPP: https://population.un.org/wpp/
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defining three future scenarios

134

substitution rate: 

how much primary energy supply

is substituted by additional 

solar and wind energy

in one year

on global average!

CO2 emissions for medium pop. variant
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growth rate wind + solar: 18 %/a
max. substitution rate: 3.5 %/a

Daten: 
https://data.ene.iiasa.ac.at/iamc-1.5c-explorer, https://population.un.org/wpp/
https://www.bp.com/en/global/corporate/energy-economics/

statistical-review-of-world-energy/downloads.html

IPCC SR15 of October 6, 2018
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scenario: P4
scen. chap. 2: S5
population: low
energy: manageable
BE/arable land '50: 40%
description: adoption of

greenhouse-gas
intensive
lifestyles
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in 2100:
CO2 456 ppm
T 1.43 °C
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land-area: challenging, high pop. variant
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in 2100:
CO2 465 ppm
T 1.51 °C
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scenario: P4
scen. chap. 2: S5
population: low
energy: manageable
BE/arable land '50: 40%
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greenhouse-gas
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conclusion on IPCC SR15
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world population:

• IPCC perspectives are unrealistic

illustrative model pathways for energy transition:

• P1, P2, and P3 cannot be reached

• P4 will not work, BECCS  world hunger

 IPCC report draws a much too optimistic picture!

 1.5°C climate goal overslept with high probability

 even to stay below 2°C instantaneous and concerted

global efforts are required including change of behavior
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which routes could work for 1.5°C goal?

145

• no middle path possible

• instead strong and concerted global commitment:

• 30% annual increase in solar + wind energy

• then 3% annual substitution of fossil energy by solar + 

wind energy until 2050 to reach 1.5°C

• (20%/a - 2%/a until 2075 would currently lead to 2°C)

with change of behavior (2 children, vegetal food):

• BECCS, bio-diversity, eradication of hunger

without change of behavior:

• BECCS not applicable, high danger of more hunger
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GHG emissions trajectory in 1.5°C scenario

149
Europen Comission, A Clean Planet for all. A European strategic 
long-term vision for a prosperous, modern, competitive and climate 
neutral economy, Brussels, 28.11.2018, COM(2018) 773 final
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development of UN-WPP predicting for 2050
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substitution rate: 

how much energy supply

is substituted by additional 

solar and wind energy

in one year
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substitution rate: 

how much primary energy supply

is substituted by additional 

solar and wind energy

in one year
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conclusion on EU Sustainability Scenario
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world population:

• high probability for too low population growth

sustainable energy transition:

• bio-energy intensification  world hunger

EU sustainability goals (Nov. 28, 2018): 

• draw a much too optimistic picture!

• significant instantaneous increase in efforts essential!
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questions to be answered

 How can energy be evaluated, if the future
energy system is unknown?

 Which consequences result?

159
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relevant publications

160

Frenzel, P., Fayyaz, S., Hillerbrand, R., Pfennig, A. (2013). Biomass as 
Feedstock in the Chemical Industry - An examination from an Exergetic 
Point of View. Chemical Engineering and Technology, 36(2), 233-240.

Frenzel, P., Hillerbrand, R., Pfennig, A. (2014). Exergetical Evaluation of 
Biobased Synthesis Pathways. Polymers, 6(2), 327-345.

Frenzel, P., Hillerbrand, R., Pfennig, A. (2014). Increase in energy and land 
use by a bio-based chemical industry. Chemical Engineering Research 
and Design, 92, 2006-2015.

Frenzel, P., Pfennig, A. (2014). Bewertung der steigenden Nachfrage nach 
Diesel-Kraftstoffen hinsichtlich ihrer CO2-Emissionen. 
In U., Bachhiesl (Ed.), Innehalten und Ausblick: Effektivität und Effizienz 
für die Energiewende (pp. 1-9).

 energy = exergy + anergy

 energy is conserved

 exergy may be lost

 connection cost and exergy

 crude oil: 1.5 €-cent/MJ

 sugar: 1.8 €-cent/MJ

 electricity: 1.7 €-cent/MJ

 steam: 1 to 2 €-cent/MJ

what is exergy? why exergy?

steam electricity

1bar 4bar

161
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calculation of exergy
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+ exergy losses in processes and equipment
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chemical exergy of various materials
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general H2-process

reactor flash distillation

H2

A

H2

A, H2, B A, B B

A

A + H2  B

preactor = 10 bar

T = 298 K

164

conversion of A in general H2 process
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chemical exergy of various materials
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bio-based?
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chemical exergy of various materials
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bio-based?

exergy per mol of carbon
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elements in chemical industry by weight
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exergy demand for different routes
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source: Philipp Frenzel, Rafaela Hillerbrand, Andreas Pfennig:
Increase in energy and land use by a bio-based chemical industry.
Chemical Engineering Research and Design 92 (2014 ) 2006-2015



77

land use 2050 for different routes
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in conclusion

• exergy is a universal measure for energy demand

• bio-based economy:
- avoid carbon losses
- keep oxygen in products
 higher viscosity and lower vapor pressures

175
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questions to be answered

 What are the boundary conditions for a 
bio-based or a CO2-based economy?

 Which options are possible?

178

relevant publications
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Biobased Synthesis Pathways. Polymers, 6(2), 327-345.
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feasible reactions
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fossil feedstock today used for:

 4% to petrochemicals

 2.5% to jet fuel

 x% as combustible or materially in chemical and steel
industry

in scenarios for 2050: 

 440 m2/cap for bio-materials
plastics ≈ 80 kg/(cap a)
i.e. intensified recycling
feedstock all chemicals ≈ 125 kg/(cap a)

 680 m2/cap for 10% bio-combustibles
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options for bio-based chemicals 2050

182
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bio- vs. CO2-economy

 bio-economy:

 existing technology, comparable to food processes
 requires agricultural land area
 energy requirements comparably small
 drop-in possible
 protein to food
 large side and recycle streams

 CO2-economy:

 no agricultural land area required
 requires a lot of energy
 not yet installed on large scale (economically feasible?)
 drop-in possible
 after net-decarbonization mostly from air
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big aerobic fermenter
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Bayer-Lanxess
tower technology

volume 13 000 m3

flowrate 650 m3/h

example:

for 100 000 t/a
down to 0.87 g/(l h)
up to 17.5 g/l

but: all purification
steps will be very big
as well! 

by courtesy of Currenta GmbH & Co. OHG
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feasibility of large-scale biotechnology
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land area required feedstock & technology

m2 / (t/a)

1 to 3 bio-technological processes
(alcohol from sugar)

0.2 to 0.5 direct biomass conversion 
(sugar from starch)

0.03 to 0.1 chemical process 
(e.g. steam cracker)
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conclusion

188

• solely third generation bio-processes not feasible

• first and second generation compete for same land area

as food

• various options available as feedstock:

CO2, sugar cane, sugar beet, corn, palm oil, 

miscanthus/reeds, possibly wood

• bio-based or CO2-based: both possible

• bio-based: preferably either sugar chemistry or

co-utilization of CO2

• cellulose component utilization of 1. generation crops is

add-on benefit, but large by-products

• proteins for food

• strong interaction: 

agriculture  food  chemistry  energy

chances, challenges

 bio-based and CO2-based chemistry: 
various options

 bio-economy ≠ only bio-technology

 bio-economy ≠ automatically sustainability

 economics, ecologics, ethics

 big chance: real circular economy

 all happens in ±30 years (or it is too late)

189
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questions to be answered

 What are the consequences for us
individually, if the sustanable development
goals shall be reached?

 What does this mean for policies and 
politics?

192
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GISTEMP Team, 2018: GISS Surface Temperature Analysis (GISTEMP). 
NASA Goddard Institute for Space Studies. Dataset accessed 2018-11-14 at 
https://data.giss.nasa.gov/gistemp/
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CO2 content of the atmosphere
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world population scenarios
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population growth eating up progress

since 1990:

 additional people fed: 2.5 bn

 population increased by: -2.3 bn

 undernourishment decreased by 0.2 bn
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CO2 emissions for medium pop. variant
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in 2100:
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inefficiency of animal-based food supply
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main results

two challenges: climate  energy
land area  food, bio-energy, bio-materials
technology  behavior

significant drivers: population growth
vegetal  animal-based food

complete shift required in:
- energy industry
- agriculture
- chemical industry
- etc.

replace fossil resources annually by up to
- for +1.5°C goal: 3%/a until 2050

- for +2.0°C goal: 2%/a until 2075

(solar & wind today: ≈ 0.5%)
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use of all technological options

questioning all paradigms:

• plant-based nutrition? 

• right for how many children?

• alternatives to religion as basis for definition of values of a 
sustainability ethics?

justice: inter-national, inter-generational, transitorial:

• How is burden for environmental protection distributed?

• How is burden for development distributed? 
How is that linked with reduction to fertility?

• How will trade with nutrition and energy be organized in the 
future?

steps towards a sustainable future

religions

Pope Francis, Ladato Si', 50, May 24, 2015:

... it must nonetheless be recognized 
that demographic growth is fully compatible 

with an integral and shared development. 
To blame population growth instead of 
extreme and selective consumerism 
on the part of some, is one way of refusing 
to face the issues. 

Quran, verse 18.46: 

Wealth and sons are the adornment of the life of this world. 

203
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conflicting human rights

204

§16.1: Men and women of full age, without any limitation due to 
race, nationality or religion, have the right to marry and to 

found a family. 

§18: Everyone has the right to freedom of thought, conscience 

and religion; this right includes freedom to change his 
religion or belief, and freedom, either alone or in 
community with others and in public or private, to 
manifest his religion or belief in teaching, practice, 
worship and observance

§25.1: Everyone has the right to a standard of living 

adequate for the health and well-being of himself and 

of his family, including food, clothing, housing and 
medical care and necessary social services, ...

international & individual obligations

205

§28: Everyone is entitled to a social and international order in 

which the rights and freedoms set forth in this 
Declaration can be fully realized.

§29.1: Everyone has duties to the community in which alone 
the free and full development of his personality is 
possible.  

§29.2: In the exercise of his rights and freedoms, everyone

shall be subject only to such limitations as are 

determined by law solely for the purpose of securing 

due recognition and respect for the rights and 

freedoms of others and of meeting the just requirements 
of morality, public order and the general welfare in a 
democratic society. 
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individual actors

206

stable
sustainable

development

individual citizen

company manager politician

media, NGOs, 

religion, ...

- legitimation?
- representing whom?
- legitimate goals?
- controlled how?
- transparency!

control

negotiate
 systems view

 essential

system

207

 Does the free interplay of forces

automatically lead to a 

sustainable system?

 systems view essential

 individual is driver, 

 i.e. only entity with freedom of choice

 individual has to be aware of his/her

 influence on the system
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what matters
individual choices determine our future:

- limit number of children
- prefer plant-based vs. animal-based nutrition
- reduce consumption of fossil resources
interaction of individuals:

- support politics for sustainability
even if individual benefits are limited

- developing societal values for sustainability, e.g.
human rights  individual obligations

general:

- the solution cannot be only political (top-down)!

- support of development on equal footing

- support sustainable energy transition and energy saving
- food vs. fuel is critical, depending on scenario
- it happens in our lifetime and that of our children
-

208

petrochemicals ≈ 4% of fossil resources

209

crude oil

natural gas

coal

≈ 4%
petro-

chemicals
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change in energy system
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bio-gas
bio-fuels

electricity,
hydrogen

final energy        effective energy                                       final energy        effective energy

transport

electricity

community 

heating

natural gas

coal

crude oil

renewables

illumination and EDP

steam generation

industrial furnace

stationary motors

room heating 

and air conditioning

transport

illumination and EDP

steam generation

industrial furnace

stationary motors

room heating 

and air conditioning

transport

illumination and EDP

steam generation

industrial furnace

stationary motors

room heating 
and air conditioning

transport

illumination and EDP

steam generation

industrial furnace

stationary motors

room heating 
and air conditioning

today                                                     in 2050

in conclusion
• reaching climate goals is possible with available technology, but has to be

systematically applied on larger scale
• significant increased global effort is required, growth 20 - 30%/a

• replace fossil resources annually by up to
- for +1.5°C goal: 3%/a until 2050

- for +2.0°C goal: 2%/a until 2075

• food supply is critical, but change of individual choices essential:

- number of children
- plant-based vs. animal-based food

• bio-based or CO2-based materials production is feasible, but not solely 
from third-generation biomass

• minimize bio-energy: fuel vs. food
• systems view instead of focus on own interests
• developmental tipping point is possible
• individually responsible, not just question of politics & technology
• it has to happen now, otherwise situation will get bad during our lifetime 

and that of our children
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questions to be answered

 How do small perturbations influence molecular motion?

 How do molecules interact over large distances?

 What are the consequences for our world view?

 How does this influence the understanding of the 
arrow of time?

 Pfennig, A. (2018): On the strong influence of molecular 
interactions over large distances. European Physical 
Journal D - Atoms, Molecules, Clusters & Optical Physics, 
72 (March, paper 45), 1-8.

214

liquid water, 37°C, periodic boundaries

215
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trajectories of molecules with minute shifts
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consequences

 determinsitic chaos, Lyapunov time

 prediction every 0.23 ps further into the 
future requires one more decimal digit in 
start coordinates and calculations

 thus: cannot be predicted over
intermediate times

 this is statement only about prediction, 
not about reality itself

219

thought experiment

220
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the ideal pendulum

221

frictionless pivot

massless rod

point mass
no air resistance

deterministic motion:

bifurcation:

?

randomization of motion

222

starting position
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question:

 How long does it take until the interaction
leads to an observable bifurcation?

 bifurcation = shift by molecular diameter

223

interaction of distant particle 1 for tinteraction

224

– mass of distant particle
– mass of observed particle
– distance between particles

– force acting between particles
– time
– initial shift of observed particle
– 0.23 ps
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interaction spheres at proceeding time

226

distant particle

x

y

z

t1 t2 t3 t4



103

cone of interaction
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distant particle
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picture

 all particles send information

 travels with speed of light

 any particle experiences at every moment
the sum of all interactions with all particles

 reacts to this interaction

 if any faraway particle would have been
in a slightly different place, 
after at most 33 ps the observed particle
would react differently at any multi-furcation

 interactions superimpose linearly

229

influence by a faraway water molecule

230

33.0 ps32.0 ps31.9 ps0.0 ps

isolated system

interacting with single water molecule at the end of the observable universe
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cone of interaction

231

particle at end
of observable
universe

x

t

nowt = 0
big bang

here 33 ps later:
bifurcation

consequences

 all particles influence each other
within 0 to 33 ps on universal scale
(possibly much faster)

 but: speed of light

 this is about interaction in reality, not only about prediction

 randomizing effect

 even in a fully deterministic world view

 generalization:

 complex systems show deterministic chaos

 at bifurcations: system randomly influenced
by all particles in the universe

232
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reversal of time

 e.g. conservation of energy and momentum

 Newtons laws of motion

 but entropy reduction improbable:

233

liquid water, 37°C, periodic boundaries

234
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cone of interaction
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reversing the direction of time
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conclusions

 physical laws may be time reversible

 initial conditions can freely be chosen only 
in forward direction of time

 in backward direction: vast multitude of 
conditions, in effect: reversal only possible 
starting from system that developed in 
forward direction

237

Ernst Mach

There is no cause nor effect in nature; 
nature has but an individual existence; 
nature simply is.

Ernst Mach: The Science of Mechanics. 
A Critical and Historical Account of its Development. 
Translated by Thomas J. McCormack. 
The Open Court Publishing Co., Chicago, 1919.
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questions to be answered

 How can cause and effect be physically understood?

cause: individual trigger or small set of triggers, inducing an 
effect, which would not have happened, if the triggers would 
not have occurred, irrespective of some consistent variation 

of the surrounding environment

(Honderich, Ted 1988. A Theory of Determinism: 
The Mind, Neuroscience, and Life-Hopes. Oxford University Press, Oxford)

241

causality

242

levels relations between different entities of 

same level

structure 

with memory

structure

macroscopic 

systems

molecules deterministic chaos, continually passing 
through bifurcations, divergent, universal 
network of randomizing interactions

quantum 

objects
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causality

243

levels relations between different entities of 

same level

structure 

with memory

structure

macroscopic 

systems

molecules deterministic chaos, continually passing 
through bifurcations, divergent, universal 
network of randomizing interactions

quantum 

objects

either random or 
deterministic chaos as for molecules

careful distinction between levels

 molecular level

 macroscopic (material) level

 structural level

244
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causality

245

levels relations between different entities of 

same level

structure 

with memory

structure

macroscopic 

systems

defined properties, physical laws, 
averaged over many molecules, not causal

molecules deterministic chaos, continually passing 
through bifurcations, divergent, universal 
network of randomizing interactions

quantum 

objects

either random or 
deterministic chaos as for molecules

Bénard convection setup

246
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Bénard convection: dissipative structure

247

Bénard cells teach us:

 structure  information

 structure causes effects in other structures

 structure determines behavior of matter

248
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causality

249

levels relations between different entities of 

same level

structure 

with memory

causal, convergent, intentional

structure causal
macroscopic 

systems

defined properties, physical laws, 
averaged over many molecules, not causal

molecules deterministic chaos, continually passing 
through bifurcations, divergent, universal 
network of randomizing interactions

quantum 

objects

either random or 
deterministic chaos as for molecules

Belousov-Zhabotinsky reaction

250

continuous, 
if reactants are
continually supplied, 
products continually
removed

author: Hiroshi Kori
https://www.youtube.com/watch?v=PnOy1fSxBdI
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human structure

251

causality

252

levels relations between different entities of 

same level

structure 

with memory

causal, convergent, intentional

structure causal
macroscopic 

systems

defined properties, physical laws, 
averaged over many molecules, not causal

molecules deterministic chaos, continually passing 
through bifurcations, divergent, universal 
network of randomizing interactions

quantum 

objects

either random or 
deterministic chaos as for molecules
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I am fan of Helge Schneider

253

causality

254

levels relations between different entities of 

same level

structure 

with memory

causal, convergent, intentional

structure causal
macroscopic 

systems

defined properties, physical laws, 
averaged over many molecules, not causal

molecules deterministic chaos, continually passing 
through bifurcations, divergent, universal 
network of randomizing interactions

quantum 

objects

either random or 
deterministic chaos as for molecules
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levels of laws we apply

255

levels

structure 

with memory

structure

macroscopic 

systems

molecules

quantum 

objects quantum physics

laws of physical objects

material equations
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Ernst Mach

There is no cause nor effect in nature; 
nature has but an individual existence; 
nature simply is.

Ernst Mach: The Science of Mechanics. 
A Critical and Historical Account of its Development. 
Translated by Thomas J. McCormack. 
The Open Court Publishing Co., Chicago, 1919.
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conclusions

levels of our description of reality

 cause-effect only on level of structure/information

 molecular level and below: unpredictable, random

human structure

 we as structure can be causal

 structure (mind) controls matter

 our structure influences our decisions

 randomness 'uses' the freedom left,
free will 'uses' the randomness left

257
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questions to be answered

 What is consciousness?

260
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qualities of consciousness

 being conscious

 focus consciousness on sensory perceptions

 consciously feel our body

 consciously control our body

 make conscious decisions

261

consciousness

 Libet, 1970s: 
conscious 350 ms after readyness potential

 Dehaene, 2014:
conscious 300 ms after picture appears

 Haynes, 2011:
predict decision 10 s before conscious with
60% certainty

 consciousness lags behind actual decision

 unconscious decides

262
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2 principal questions

 Can we be conscious of things, which we
in principle cannot remember?

 Can we remember things, which have not 
been conscious?

here: 
memory = pRAM

permanent random-access memory

263

consciousness

264

what can
in principle
be stored in pRAM

what is
conscious

what is
stored in pRAM 
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consciousness

265

what can
in principle
be stored in pRAM

what is
transferred
to pRAM

what is
stored in pRAM 

consciousness

266

what can
in principle
be stored in pRAM

what is
transferred
to pRAM

what is
stored in pRAM 

working hypothesis:
consciousness = what is transferred in the direction of pRAM
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consciousness

267

what can
in principle
be stored in pRAM

what is
transferred
to pRAM

what is
stored in pRAM 

working hypothesis:
consciousness = what is transferred in the direction of pRAM

being conscious = being able to remember things
conscious information limited = storage speed limited (MB/s)
varying focus = various aspects can be stored (percenptions)
consciously breathe = remember that we influence breathing
storage comes after content to be stored has been generated

picture

 now: 
- 2 to 3 seconds

 consciousness: 
- accessing the filing system
- accessible after 'now'

 unconscious: 
- very active system 
- constantly accessing the pRAM filing system
- e.g. brain processes
- not accessible after 'now'
- determines what is sent to pRAM

268
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active impression of consciousness

 unconscious is active but not remembered
= not accessible to itself

 rubber-hand illusion

269

the rubber-hand illusion

270

author: Rick Lax
https://www.youtube.com/watch?v=RaP0MqvkvUw
https://www.facebook.com/realRickLax/videos/861803434001511/
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active impression of consciousness

 unconscious is active but not remembered
= not accessible to itself beyond 'now'

 rubber-hand illusion:
unconscious can not see itself and thus mistakes the 
memory as active part, because that is the only thing it 
can see

 active interaction between memory and unconscious, 
active loops controlled by unconscious

 since 'now' is 2 to 3 seconds, we can not distinguish
what is the active and what is the passive part.

271

Chalmers: hard problem of consciousness

 Why do we have experiences along with physical
processes? 
e.g.: Why do we feel pain when cutting into finger?

 Why do we have exactly those experiences we
have? 
e.g.: Why does pain feel like pain and not like 
some itching?

 What is the difference between us and zombies, 
who act identically but don't have those feelings?

272



126

hard problem of consciousness

 Without getting memorable feedback from
body and unconscious, our evolutionary
predecessors would not have survived and we
would not have developed. Zombies would have
died out.

 Since evolution is random (bifurcations
influenced by all particles in the universe), any
evolutionary result is a consequence of the 
random bifurcations along the evolutionary path. 
So there is no answer to asking for a cause

why pain feels like pain.

273

conclusions

 now: 2 to 3 seconds

 consciousness = transfer to pRAM memory 

 unconscious = active processes, etc.

 unconscious cannot actively 'see' itself

 conscious experience (feelings) = 
memorable feedback from body and 
unconscious

274
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questions to be answered

 How does free will work?

 Are our free choices predetermined?

 If not, why are they not just random?

 How does a conscious choice work?

 Can we be primary cause by a free choice?

277

free will

 We could have chosen otherwise!

 How to prove?

278
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free will

 We could have chosen otherwise!

 How to prove? Impossible!

 How can we then have the impression
of free will?

279

free will

 We could have chosen otherwise!

 How to prove? Impossible!

 How can we then have the impression
of free will?

1. it is really random

2. we don't know the decision beforehand

 How do conscious decisions work?

 Can we be primary cause of our actions?

280
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our brain

 is a complex system

 any decision is a bifurcation

 any decision randomly influenced by all 
particles in the universe

281

can a decision have random aspects?

 brain = complex neural system

 decision = bifurcation

 synapse:
area 0.04 μm2

distance to neuron 20 nm 
concentration 10 to 25 μmol/l Ca2+

 7 to 20 ions Ca2+ make a difference

 molecular level involved

 decision will have random aspects
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conscious decision

 What is the role of consciousness in a 
decision?

 How does it influence a free-will decision?

283

conscious decision

 filing system will indeed not know the 
decision before it has been made

 consciousness is surprised by decision

 interprets: we could have decided otherwise

 impression of free will

 Why is it our decision? 
Are we the cause for the decision?
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different levels of choices

 A or B?

 daily micro-decisions

 spaghetti or salad?

 vegan?

285

different levels of choices

 A or B?

 daily micro-decisions

 spaghetti or salad?

 vegan?

 our structure – our personality, preferences – presets
probabilities of options from which to choose

 can vary between random to 0 or 1

 free will: intricate interplay between randomness and our
defining structure/personality

 primary cause because not predetermined

286
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responsibility

 our personal structure defines our preferences

 randomness only within these probabilities

 outcome is to be attributed to our personal 
structure

 positive or negative feedback has to affect
our personal structure

 we are personally responsible, because

 we are free and primary cause

 it is our individual personal structure

 responsibility can not be avoided

287

ethics

 we are the primary cause for our freely chosen
actions

 we are automatically responsible

 ethics
- discursive: negotiate with co-humans
- basis: 
- everybody has equal rights and obligations

- account for boundary conditions,
- which cannot be negotiated

288
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all in one book

289

Andreas Pfennig, 2018
So Gelingt unsere Zukunft
Books on Demand, Norderstedt
www.bod.de/buchshop/
so-gelingt-unsere-zukunft-
andreas-pfennig-9783752831870

chapter titles:
1 Leben, Tod und Sterben
2 Evolution
3 Realität, Wissen und Wahrnehmung
4 Lernen und wissenschaftliche Erkenntnis 
5 Wissenschaftliche Weltsicht 
6 Gehirn, Bewusstsein, Selbst, Kausalität und

freier Wille
7 Weltanschauung, Sinn und Ethik
8 Globale Ethik, individuelles Handeln
9 Gelungenes Leben, Menschsein

CO2 content of the atmosphere
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COP 21 Paris agreement

UN, Kyoto protocol

G. H. Brundtland, Our Common Future

G. O. Barney, The Global 2000 Report

D. L. Meadows, Club of Rome, The Limits to Growth
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individual actors

291

stable
sustainable

development

individual citizen

company manager politician

media, NGOs, 

religion, ...

- legitimation?
- representing whom?
- legitimate goals?
- controlled how?
- transparency!

control

negotiate

system

292

 Does the free interplay of forces

automatically lead to a 

sustainable system?

 systems view essential

 individual is driver, 

 i.e. only entity with freedom of choice

 individual has to be aware of his/her

 influence on the system
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what matters
individual choices determine our future:

- limit number of children
- prefer plant-based vs. animal-based nutrition
- reduce consumption of fossil resources
interaction of individuals:

- support politics for sustainability
even if individual benefits are limited

- developing societal values for sustainability, e.g.
human rights  individual obligations

general:

- the solution cannot be only political (top-down)!

- support of development on equal footing

- support sustainable energy transition and energy saving
- food vs. fuel is critical, depending on scenario
- it happens in our lifetime and that of our children
-

293

in conclusion
• reaching climate goals is possible with available technology, but has to be

systematically applied on larger scale
• significant increased global effort is required, growth 20 - 30%/a

• replace fossil resources annually by up to
- for +1.5°C goal: 3%/a until 2050

- for +2.0°C goal: 2%/a until 2075

• food supply is critical, but change of individual choices essential:

- number of children
- plant-based vs. animal-based food

• bio-based or CO2-based materials production is feasible, but not solely 
from third-generation biomass

• minimize bio-energy: fuel vs. food
• systems view instead of focus on own interests
• developmental tipping point is possible
• individually responsible, not just question of politics & technology
• it has to happen now, otherwise situation will get bad during our lifetime 

and that of our children
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conclusions

 we have free will (cannot be predicted)

 it is us, who preset preferences as
probabilities

 we are fundamentally responsible

 we are also individually responsible

 for keeping our little planet earth a 
life-supporting system

 for ensuring wellbeing of everybody

295

297This is all we got!
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