CATALYST CARRIER SYNTHESIS: FROM PRECIPITATION TO IMPREGNATION

ULIEGE 3rd OF FEBRUARY 2020

A. DANDEU, M. MINIÈRE, F. SALVATORI, <u>J-M SCHWEITZER</u>, M. SERVEL

CONTEXT

• What is actually done

Many innovative catalysts are developed and industrialized using this approach

• Limits of this approach:

- Knowledge are limited to propose new formulations out of our « standard » ranges
- Promising product at lab scale which cannot be scaled-up industrially

HYDROCARBURES

RESPONSABLES

Development of a Chemical Engineering approach

• Creation of a specific team in 2015-2016

• The objective of this team is to interact with different entities involved in the catalyst manufacturing:

- To improve existing catalyst manufacturing procedures
- To propose new developments

Development of Building Blocks (Collaborations, PhD, Post Doc)

- Comprehensive studies at local scale to understand which are the physical and chemical phenomena controlling catalyst textural properties
- Local measurements with specific analytical tools in controlled lab devices
- Identification of scale-up parameters (« descriptors »)
- Model development including those parameters

Make available models for industrial projects to develop innovative catalysts

CATALYST MANUFACTURING CHAIN

HYDROCARBURES RESPONSABLES

Boehmite powder

<u>1. Boehmite gel synthesis</u>

2. Carrier manufacturing

3. Catalyst manufacturing

Extrudates

Product quality targets: Textural properties Mechanical strength Productivity

PRECIPITATION - GELATION – PARTICLE SIZE DISTRIBUTION:

FROM DLVO THEORY TO POPULATION BALANCE

DLVO THEORY

B. Derjaguin, L. Landau, E. Verwey and T. Overbeek (1941-1948)

DLVO modeling: Objective: modeling of the aggregation / breakage phenomena to reproduce the gelation of colloidal suspensions

• Van de Waals potential

$$W_{vdW} = -\frac{A_H}{6} \cdot \left(\frac{2 \cdot a^2}{r^2 - 4 \cdot a^2} + \frac{2 \cdot a^2}{r^2} + \ln\left(\frac{r^2 - 4 \cdot a^2}{r^2}\right) \right)$$

- Activity coefficient
- Debye length = f(lonic strength)

$$W_{elec} = \frac{64 \cdot \pi \cdot k_B \cdot T \cdot n_{ion} \cdot a}{K_{debye}^2} \cdot \gamma_G^2 \cdot e^{-K_{debye} \cdot h}$$

DLVO THEORY

Interaction forces = potential gradient

$$\overrightarrow{F_{ij}} = -\overrightarrow{\nabla}W_{tot}$$

Momentum balances

$$m \cdot \overrightarrow{a_i} = \sum_{i \neq j} \overrightarrow{F_{ij}} - 6 \cdot \pi \cdot \eta \cdot a \cdot \overrightarrow{v}$$

DLVO THEORY FOR DRYING

HYDROCARBURES RESPONSABLES

Strong repulsive forces \rightarrow structured arrangement

• Effect of the ionic strength

• The energy barrier can be decreased by changing the environment (Ionic environment)

Lintingre, É.; Ducouret, G.; Lequeux, F.; Olanier, L.; Périé, T.; Talini, L. (2015) Controlling the buckling instability of drying droplets of suspensions through colloidal interactions. In : Soft Matter, vol. 11, n° 18, p. 3660–3665

DLVO THEORY FOR DRYING

HYDROCARBURES RESPONSABLES

Repulsion controls the particle porosity and/or the mechanical strength
 More repulsion leads to dense particles with a deformation risk

Lintingre, É.; Ducouret, G.; Lequeux, F.; Olanier, L.; Périé, T.; Talini, L. (2015) Controlling the buckling instability of drying droplets of suspensions through colloidal interactions. In : Soft Matter, vol. 11, n° 18, p. 3660–3665

DLVO THEORY: EXTENSION TO AGGREGATION AND GELATION

HYDROCARBURES RESPONSABLES

Aggregation and Gelation

- DLVO potential: Secondary minimum
- Use of DLVO theory for the suspension preparation steps
- Forces involved: long distance attraction (reversible)
- Aggregate geometry characterized by a fractal dimension

11 © 2016 IFPEN

DLVO THEORY: EXTENSION TO AGGREGATION AND GELATION

HYDROCARBURES RESPONSABLES

Fractal dimension

- Aggregation and Gelation
 - Use of DLVO theory for the suspension preparation steps
 - O 3D simulations with 1000 particles (CPU = 3 weeks)
 - Colloid radius: 50 nm
 - Ionic strength: 0.01 mol/l
 - Solid holdup: 10% vol.
 - Zeta potential: 45 mV

● Evaluation of the fractal dimension → fundamental parameter for aggregation modeling using population balance

Schäfer, Bastian; Hecht, Martin; Harting, Jens; Nirschl, Hermann (2010) Agglomeration and filtration of colloidal suspensions with

DVLO interactions in simulation and experiment. In : Journal of

colloid and interface science, vol. 349, n° 1, p. 186–195.

Models are based on the master population balance equation (PBE)

Continuous formalism

$$\frac{\partial f_1(x, t)}{\partial t} = \frac{1}{2} \int_0^x a(x - x', x') f_1(x - x', t) f_1(x', t) dx' - f_1(x, t)$$
$$\times \int_0^\infty a(x, x') f_1(x', t) dx'.$$

Ramkrishna, Doraiswami (2000) Population balances. Theory and applications to particulate systems in engineering. San Diego, CA : Academic Press.

Discrete formalism

Lattuada, Marco; Zaccone, Alessio; Wu, Hua; Morbidelli, Massimo (2016) Population-balance description of shear induced clustering, gelation and suspension viscosity in sheared DLVO colloids. In : Soft Matter, vol. 12, 2016, p. 5313–5324.

> K^A: aggregation kernel K^B: breakage kernel

HYDROCARBURES RESPONSABLES

Definition of discrete aggregate classes:
 Based on the fractal dimension

$$n_i = \frac{m_i}{m_p} = k_f \cdot \left(\frac{R_{g,i}}{R_p}\right)^{d_f}$$

Sorensen, C. M. Light Scattering by Fractal Aggregates: A Review. In : Aerosol Science and Technology, vol. 35, n° 2, p. 648–687.

Where n_i is the number of colloids which constitute the ith aggregate

• The number of colloids which constitute the ith aggregate

 $n_i = n_{i-1} + 1 + (1.08)^i$

• The gyration radius

 $R_{g,i} = R_p \cdot \left(\frac{n_i}{k_f}\right)^{1/d_f}$

Fractal dimension: Ionic strength = 0.01 mol/l

• Calculation on the basis of 3D DLVO aggregation modeling

2 000

cluster number	R_gyr cluster (nm)	Rp (nm)	np_cluster	dim fractal
1	514.32	50	182	2.23
2	676.70	50	305	2.20
3	550.07	50	153	2.10
4	401.45	50	185	2.51
			average	2.26

3 000

2 500

2 000

1 500

1 000

500

Z

 $d_f =$

2 000

Cluster 2

0+

3 000

1 000

Fractal dimension: lonic strength = 0.003 mol/l

Calculation on the basis of 3D DLVO aggregation modeling

 $d_f =$

Aggregation kernel

- 2 terms for this kernel
 - Brownian agglomeration characterized by:
 - Fuchs stability ratio W
 - Shear induced agglomeration characterized by:
 - Collision efficiency **a**
 - Shear rate $\dot{\gamma}$

Lattuada, Marco; Zaccone, Alessio; Wu, Hua; Morbidelli, Massimo (2016) Population-balance description of shear induced clustering, gelation and suspension viscosity in sheared DLVO colloids. In : Soft Matter, vol. 12, 2016, p. 5313–5324.

HYDROCARBURES RESPONSABLES

Breakage kernel

- Power-law model proposed by Harshe et al.
- According to the population balance equation we need to define the distribution G_{im} of the clusters issued from the breakage of a given aggregate

 $K_i^{\rm B} = c_1 (\eta \dot{\gamma})^n R_{g,i}^m.$

- The broken aggregates are given by a Schultz-Zimm distribution
 - z is a parameter determining the width
 - This formalism ensure that only smaller clusters are formed

$$f_{m,k} = (a)^{z+1} (N_{\rm fr}^{\rm s})^z \exp[-(a \cdot N_{\rm fr}^{\rm s})] \frac{1}{\Gamma(z+1)}$$

Harshe, Y. M.; Lattuada, M. (2012) Breakage Rate of Colloidal Aggregates in Shear Flow through Stokesian Dynamics. In : Langmuir, vol. 28, 2012, p. 283–292.

• $\varepsilon_s = \sum_i N_i \cdot \frac{4}{3} \cdot \pi \cdot R_{g,i}^3$ • Viscosity: $\varepsilon_s \equiv \emptyset$ $\frac{5\phi_{\rm c}}{2(2-k_0\phi_{\rm c})}$ $\eta_{\rm s} = \eta \left(\frac{1 - \overline{\phi_{\rm c}}}{\left(1 - (k_0 \phi_{\rm c} - 1) \frac{\phi}{\phi} \right)} \right)$ Equation proposed by van de Ven and Takamura Our simulation Lattuada et al. (2016) 10² Time evolution of suspension • 19%, 1700 s⁻¹ viscosity **19%**, 1400 s⁻¹ 4 21%, 1300 s⁻¹ ♦ 21%, 1700 s⁻¹ Viscosity [Pa · s] 23%, 1400 s⁻¹ 10 Lattuada et al. (2016) Our simulation 0.1 0.2 0.3 0.4 tau 10 5000 10000 15000 W=10⁶, wb Time [s] -W=10⁵, wb 6000 W=10⁴, wb W=10³, wb 5000 -W=10⁶, nb 10000 Average gyration radius 4000⁾ a 2000⁾ a 2000⁾ ---W=10⁵, nb 8000 --W=10⁴, nb ---W=10³, nb $\bullet R_g = \frac{1}{N_o} \cdot \sum_i N_i \cdot n_i \cdot R_{g,i}$ **4** 6000 **4** 4000 3000 2000 2000 1000 0

AGGREGATION AND GELATION MODELING

21 © 2016 | FPEN

1.00E+04

1.00E+03

1.00E-03

0

1.00E+02 - 1.00E+01 1.00E+00 § 1.00E-01 1.00E-02

Solid holdup

HYDROCARBURES RESPONSABLES

10²

FIRST COMPARISON BETWEEN EXPERIMENTAL RESULTS AND PHYSICAL MODELS

Colloidal aggregation in Brownian conditions → inspected with Dynamic Light Scattering (DLS)

No shear $\rightarrow \dot{\gamma} = 0$ Only aggregation kernel $\rightarrow \beta_{ij}^{A} = \frac{2k_{B}T}{3nW} \left(i^{\frac{1}{df}} + j^{\frac{1}{df}} \right) \left(i^{-\frac{1}{df}} + j^{-\frac{1}{df}} \right)$

Near to IEP \rightarrow the aggregation process is faster

W = 1 \rightarrow df free parameter

Far IEP \rightarrow the aggregation process is slower

 $W > 1 \rightarrow W$ and df free parameters

- DLVO modeling leads to an estimate of the aggregate fractal dimension
- Population balance modeling with aggregation and breakage kernels proposed by Lattuada et al. (2016) leads to the prediction of the cluster size distribution and the time evolution of suspension viscosity
- Good trends are obtained for viscosity and average gyration radius
- Population balance model is tested on an IFPEN experimental case
- This model is a tool to drive the unit operations by adapting the hydrodynamic constraints and the chemical formulation of the suspension

CONSTRUCTION OF THE BUILDING BLOCK

Alumina gel drying

2 et 3

Objectives

Construction of a drying building block (particle drying model)

- 1- allow to evaluate the effects of operating conditions
- 2- allow to evaluate the mechanical resistance of the dry particle
- 3- useful to scale-up industrial dryers (belt dryer, atomizer)

Particle model

Different steps during drying

- 1- Particle reduction due to water evaporation
- 2- Crust formation
- 3- Elimination of water contained in the crust
- 4- Gas feeding
- 5- Crust thickening

Exp.

BUILDING BLOCK: PARTICLE MODEL

HYDROCARBURES RESPONSABLES

Particle model for drying

Solid porosity at time 0 s

Drying with $v_{gas} = 1 \text{ m/s}$

BELT DRYER

RESPONSIBLE OIL AND GAS

Inlet

Outlet

OBJECTS DEFINITION

SIMULATION

RESPONSIBLE OIL AND GAS

% vol water

ATOMIZER MODELING

- Development of an atomizer model which includes
 - The gel drying particle model developed and validated at lab scale
 - A stochastic gel droplet ejection model taking into account
 - Droplet size distribution
 - Ejection angles
 - Ejection velocity
 - A momentum balance for each particle taking into account friction forces and gravity
 - A elastic collision model between dried particles and the wall
 - Particle-Particle collisions will be neglected (coalescence phenomenon is not preponderant in a spray)
 - The gas velocity field in an atomizer (calculated from 3D Comsol simulations)
- This model is developed for a lab scale atomizer (Buchi)
- This model isvalidated with experiments carried out on this atomizer
- This model provides
 - A statistical evaluation of the atomizer performances
 - An 3D animation of the particle trajectories

GAS VELOCITY FIELD

O 3D simulations with gas only using Comsol: Velocity fields for 2, 10 and 30 m3/h

STOCHASTIC PROCEDURE

• For a given particle

• Generate a random number χ_{wt} (between 0 and 1) for the particle size

• Generate a random number χ_{θ} (between 0 and 1) for initial θ angle

• Generate a random number χ_{φ} (between 0 and 1) for initial φ angle

 $\theta = \chi_{\theta} \cdot 2\pi$ $\varphi = \chi_{\varphi} \cdot Atan(R/H)$

RESPONSIBLE OIL AND GAS

- Initial ejection velocity is set at 10 m/s
- Start the simulation

EFFECT OF GAS FLOWRATE

RESPONSIBLE OIL AND GAS

nouvelles

STATIC TRAJECTORIES FOR 40 μ

RESPONSIBLE OIL AND GAS

Evolution of the drying building block

- In some cases the particle shape is changing during drying
- Experimentally observed in a isotropic drying device (PhD Quentin Gaubert IFPEN/IUSTI)

• Single droplet levitation under drying conditions

- Droplet levitation system using an acoustic wave
- Optimization of the gas velocity field in order to reach isotropic conditions

Deformation model: validation

HYDROCARBURES RESPONSABLES

Particle model V1.0

 $\begin{cases} x = (R + r\cos(v))\cos(u) \\ y = (R + r\cos(v))\sin(u) \\ z = r\sin(v) \end{cases}$

$$\begin{cases} \displaystyle \frac{dV_{gaz}}{dt} = (1 - \alpha)Q_{vap} \\ R + r = R_{cr} \\ \displaystyle \frac{dV_{tore}}{dt} = -\alpha Q_{vap} \\ V_{tore} = 2\pi \left(Rr^2 \left(\theta_1 - \frac{\sin(2\theta_1)}{2} \right) + \frac{2}{3}r^3 \sin^3(\theta_1) \right) \text{ si } R \le r \\ V_{tore} = 2\pi^2 r^2 R \text{ si } R > r \end{cases}$$

In progress: deformation=f(operating conditions)

MOVING BED MODELING

REACTOR SCHEME

Multi-zone calcinator

REACTOR SCHEME

RESPONSIBLE OIL AND GAS

• On each calcination zone :

Desorption of physisorbed and chemisorbed water

$$H_2O_{(s)} \xrightarrow{k_1} H_2O_{(g)} \qquad r_1 = k_1 [H_2O_{(g)}]$$

• Conversion of boehmite to alumina through a reaction intermediate

$$AlOOH \xrightarrow{}_{k_{2}} \frac{1}{2} Al_{2}O_{3-x/2}(OH)_{x} + \frac{2-x}{4}H_{2}O_{(g)}$$
$$Al_{int}^{*}$$
$$Al_{2}O_{3-x/2}(OH)_{x} \xrightarrow{}_{k_{3}} Al_{2}O_{3} + \frac{x}{2}H_{2}O_{(g)}$$

Hypothesis : First order kinetics $\mathcal{O}_{(s)}$ $r_2 = k_2[AlOOH]$ $r_3 = k_3[Al_{int}]$

* Thèse F Karouia (2014)

8 PLATS DE 120 EP _ C-

REACTOR DISCRETIZATION

RESPONSIBLE OIL AND GAS

2D model (r,z)

MASS BALANCES

• Solid molar balances :

$$C_i^s \leftrightarrow [mol_s \cdot m^{-3}_{particle}]$$

$$\varepsilon_{s} \cdot \frac{\partial C_{i}^{s}}{\partial t} = -\frac{\partial (v_{ss} \cdot C_{i}^{s})}{\partial z} + \sum_{j} \mu_{ij} \cdot r_{j} \cdot \varepsilon_{s}$$

• Gas molar balances :

$$\left(\varepsilon_{g}+\varepsilon_{p}\varepsilon_{s}\right)\cdot\frac{\partial C_{i}^{g}}{\partial t}=-\frac{1}{r}\cdot\frac{\partial\left(r\cdot v_{sg}\cdot C_{i}^{g}\right)}{\partial r}+\sum_{j}\mu_{ij}\cdot r_{j}\cdot\varepsilon_{s}$$

• Equation of state:

$$\frac{\partial}{\partial r} \left(\frac{r \cdot v_{sg}}{T_g} \right) = -\left(\varepsilon_g + \varepsilon_p \varepsilon_s \right) \cdot \frac{r}{T_g^2} \cdot \frac{\partial T_g}{\partial t} + r \cdot \frac{R}{P_{tot}} \cdot \sum_i \sum_j \mu_{ij} \cdot r_j \cdot \varepsilon_s$$

Solid thermal balance :

$$\rho_{s} \cdot \mathcal{C}_{ps} \cdot \varepsilon_{s} \cdot \frac{\partial T_{s}}{\partial t} = -v_{ss} \cdot \rho_{s} \cdot \mathcal{C}_{ps} \cdot \frac{\partial T_{s}}{\partial z} + \sum_{j} r_{j} \cdot \left(-\Delta H r_{j}\right) \cdot \varepsilon_{s} + h_{gs} \frac{A_{p}}{V_{p}} \cdot \varepsilon_{s} \cdot \left(T_{g} - T_{s}\right)$$

Gas thermal balance :

$$\rho_g \cdot C_{pg} \cdot \varepsilon_g \cdot \frac{\partial T_g}{\partial t} = -v_{sg} \cdot \rho_g \cdot C_{pg} \cdot \frac{\partial T_g}{\partial r} - h_{gs} \frac{A_p}{V_p} \cdot \varepsilon_g \cdot (T_g - T_s)$$

Sheet "color_map" :

RESPONSIBLE OIL AND GAS

IMPREGNATION MODELING

Development of particle model for impregnation

- Ory impregnation
- Wet impregnation

Comparison with experimental work based on MRI measurements

• Optimization of the impregnation step in the catalyst manfucturing procedure

CAPILLARY SUCTION MODELING

HYDROCARBURES RESPONSABLES

$$\frac{f(m. \vec{v})}{dt} = \vec{F}_{capillary} + \vec{F}_{friction}$$

$$F_{capillary}$$

$$\Delta P_{Lap}$$

$$F_{capillary} = \Delta P_{Laplace} \cdot S$$
$$\Delta P_{Laplace} = \frac{2 \cdot \gamma \cdot cos\theta}{R_{pore}}$$
$$S = \pi \cdot R_{pore}^{2}$$
$$F_{capillary} = 2 \cdot \pi \cdot R_{pore} \cdot \gamma \cdot cos\theta$$

CAPILLARY SUCTION MODELING

HYDROCARBURES RESPONSABLES

$$(P_1 - P_2) \cdot 2 \cdot \pi \cdot r \cdot dr + 2 \cdot \pi \cdot r \cdot z \cdot \tau - 2 \cdot \pi \cdot (r + dr) \cdot z \cdot (\tau + d\tau) = 0$$

$$\bar{v} = \frac{\Delta P_{friction} \cdot R_{pore}^2}{8 \cdot \mu \cdot z}$$

$$F_{friction} = \Delta P_{friction} \cdot S$$

 $F_{friction} = 8 \cdot \pi \cdot \mu \cdot z. \, \bar{v}$

CONVECTION-DIFFUSION-ADSORPTION MODELING

• For a cylindrical particle

$$\varepsilon_p \cdot \frac{\partial C_i^p}{\partial t} = \frac{D_{eff}}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \frac{\partial C_i^p}{\partial r} \right) + \frac{\varepsilon_p}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \bar{v} \cdot C_i^p \right) + \sum_j \mu_{ij} \cdot r_{kin} \cdot \rho_s$$

Volumetric flowrate conservation

$$\frac{\partial}{\partial r}(r\cdot \bar{v}) = 0$$

Compounds in pores when the particle is completly wetted

$$\varepsilon_p \cdot \frac{\partial C_i^p}{\partial t} = \frac{D_{eff}}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \frac{\partial C_i^p}{\partial r} \right) + \sum_j \mu_{ij} \cdot r_{kin} \cdot \rho_s$$

Compounds on the solid surface

$$\frac{\partial C_i^*}{\partial t} = \frac{D_s}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \frac{\partial C_i^*}{\partial r} \right) + \sum_j \mu_{ij} \cdot r_{kin}$$

MODEL VALIDATION: DRY IMPREGNATION

54

HYDROCARBURES RESPONSABLES

Case of 0,2M [Ni²⁺]

Adsorbed Nickel

Nickel in pores

MODEL VALIDATION: WET IMPREGNATION

20 min

HYDROCARBURES RESPONSABLES

Case of 0,2M [Ni²⁺]

Adsorbed Nickel

Nickel in pores

3 min

29 min

Thesis starting in 2018 Giullia Ferri

IDENTIFICATION AND STUDY OF RELEVANT SOLID DESCRIPTORS DURING BOEHMITE SYNTHESIS

Construction of an unique solid structure model where the empirical parameters are adjusted for each unit operation step

- Variations of these parameters through the different steps should:
 - allow to evaluate their sensitivities

OBJECTIVES

- Illow to evaluate their impact on the final textural properties
- The final objective is to estimate the values of those parameters for different unit operation in order to reach a given set of textural properties.

STRATEGY

RESPONSIBLE OIL AND GAS

I. Improvement of the solid construction model (dry and wet media)

- Solid structural model: Stochastic assembly of elementary particles. The stochastic methodology is based on specific distribution functions such as:
 - Fractal dimension
 - Agglomerates size
 - Aggregates size
 - Preferential sticking faces of the elementary particles
 - ...
- Distribution functions
 - Continuous or discretes
 - Different types (log-normal, gaussian,...)
 - Characterized by a limited number of parameters (mean, standard deviation,...)
- Calculation of the global properties of the reconstructed solid
 - Size pore distribution
 - Porous volume
 - SBET
 - Crystal size distribution
 - ...

Morphological Modeling and Transport Properties of mesoporous alumina Haisheng Wang

Thèse Haisheng Wang (Mines de Paris / IFPEN 2016)

2 scales model Model parameters Elementary particle size Size of aggregates Number of elementary particles in aggregates

Validation on SBET, Vp, TEM images, Nitrogen desorption, ...

STRATEGY

2. Solid analytical characterization at each step

- What are the analytical techniques available?
 - SAXS
 - Mercury porosity
 - MEB
 - ...
- Reliability in wet conditions
- Development or modification of specific analytical methods in order to define new descriptors
- Are all these methods enough to sensitize the global set of textural properties?
- 3. Optimization of distribution function parameters in order to reproduce the analytical results obtained at each steps.

8 400

200

0,5

Pression relative

- Follow their evolution after each steps
- Sensitivity analysis to identify which steps are critical for the final textural properties
- 4. Modeling of the distribution parameters based on physical-chemical descriptors (interaction with the DLVO model)
 - pH, zeta potential, Re, shear stress, Drying severity...

RESPONSIBLE OIL AND GAS

Thesis starting in 2019 Iana Sudreau

EXPERIMENTAL STUDY AND MODELLING OF A COLLOIDAL GEL RHEOLOGY UNDER PHYSICO-CHEMICAL AND HYDRODYNAMIC CONSTRAINTS

STRATEGY - GLOBAL

STRATEGY – COMPARTMENTAL MODELING

- shear rate field obtained from CFD simulation (COMSOL / FLUENT)
- shear rate data transposed to a structured grid (FORTRAN code)
- compartmentalization according to the shear rate field
- calculation of mean entrance and outlet compartmental flow rate
- population balance modeling inside each compartment

determination of mean entrance and outlet compartment flow rate

population balance modelling run inside each compartment

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

