Products, Environment, and Processes (PEPs)

PEPs logoIn the PEPs group, we are active in the fields of (bio-) chemical reaction engineering, thermal and mechanical unit operations, process simulation, low carbon energy systems and sustainable development. This includes the corresponding fundamentals, especially mass and energy transfers, and multi-phase fluid dynamics. A strength of our approach is to link the different scales in time and space:

  • starting from microscopic and even molecular level
  • having a strong focus on the equipment level in experiment as well as modelling
  • reaching up to the simulation of entire processes
  • and evaluating the favored large-scale deployment pathway 

 

This allows us to reliably describe and optimize equipment performance based on physically sound modelling, which even includes extrapolation beyond the region of experiments. These tools permit a knowledge-based optimization of equipment design and operation parameters, as a basis for safe, sustainable and profitable scale-up of the processes. Indeed, the simulation of entire processes together with Life Cycle Assessment (LCA) as eco-design support guide the optimization on the process level, where economic as well as environmental parameters are included in the evaluation.

 

Experimental infrastructure is available for model development and validation, covering a wide range of applications, e.g. to study hydrodynamics in a various equipment including trajectography, to follow the microstructure of materials and systems during their processing especially in a product-oriented engineering approach with (micro-) tomography, lab-scale measuring devices for characterization of behavior of drops and dispersions as well as pilot-plant scale equipment for various unit operations like drying and distillation. In addition, adequate chemical analysis equipment is used to determine gas and liquid phase compositions, including various chromatography and X-ray devices.

 

The future perspective of our research – besides further development of our fundamental methods – is to get chemical-engineering design tools prepared for the future. Thus our current research topics aim at allowing safe design of sustainable chemical and biobased processes, where process-specific material and energy transformations imply properties changes in the systems like e.g. increased viscosity, posing challenges to the chemical engineer. Similarly the recycle of used material like recovery of phosphorus from sewage sludge or the separation of rare earth elements in urban mining create new and challenging engineering tasks. In particular, main and alternative routes have to be evaluated and compared for sustainability and this can be done with the methods we design.

 

The majority of our methods and applications is developed in cooperation or at least in close contact with industry, including essentially all major chemical companies and a variety of local and European SMEs.